New!Stay informed with our freeemail newsletter.
advertisement
Science News
from research organizations

Polymer coating accelerates fuel production

Date:
August 5, 2021
Source:
University of Tsukuba
Summary:
Researchers have found that introducing a polymer coating onto a tin catalyst accelerated the conversion of a greenhouse gas (CO2) into an industrial fuel (formate). Computational and electrochemical investigations supported a mechanism wherein a complete polymer layer surrounding the porous tin catalysts effectively captured and shuttled CO2 molecules to the catalytically active metal surface. This simple catalyst design strategy can be applied to develop CO2-recycling systems.
Share:
advertisement

FULL STORY

It is well-established that the accumulation of greenhouse gases, like carbon dioxide (CO2), in the atmosphere contributes to climate change. Therefore, CO2capture and recycling are vital for mitigating detrimental environmental effects and addressing the climate crisis. Recently, researchers from Japan designed a polymer-coated metal catalyst that accelerates CO2conversion and offers green energy insights.

In a study published inACS Catalysis, researchers from the University of Tsukuba describe porous tin (Sn) catalysts coated with polyethylene glycol (PEG) and show how this polymer facilitates CO2transformation into a useful carbon-based fuel.

Various polymers can capture CO2molecules, and Sn catalysts are known to reduce CO2其他分子,比如甲酸(HCOO-), which can be reused to power fuel cells.

"We were interested in combining these capabilities into a single catalytic system that could scrub CO2from its surroundings and recycle it into formate," says research group leader, Professor Yoshikazu Ito. "However, it's difficult to obtain only the desired product, formate, at a high production rate and in high yield, so we had to fine-tune the catalyst design."

The formate production rate of PEG-coated Sn was 24 times higher than that of a conventional Sn plate electrode, and no byproducts were detected (>99% yield of formate). To understand this enhanced CO2-reduction reaction, the researchers fabricated an Sn catalyst coated with another CO2-capturing polymer (polyethyleneimine; PEI) whose structure interacts differently with incoming CO2. The PEG-coated Sn still outperformed the PEI-coated Sn, and considering the chemical characteristics of these polymers, the authors proposed that PEI held the CO2molecules too tightly, whereas PEG struck a key balance in capturing and then releasing CO2to the catalytic Sn core.

"Modeling this reaction using theoretical computations confirmed the favorability of PEG shuttling CO2to the Sn center and explained the accelerated formate production," explains PhD student, Samuel Jeong. "However, we wanted to further clarify the PEG-CO2interactions."

More detailed computations revealed that while the absence of polymer limits the Sn catalyst's CO2-capture ability, an excessively dense layer of PEG inhibits CO2transfer to the metal surface, thereby decreasing formate production. Therefore, a complete but relatively sparse layer of PEG is optimal for funneling CO2to Sn, while maintaining a CO2-rich environment and preventing byproduct release.

The mantra "reduce, reuse, recycle" no longer only refers to single-use plastics. The simple catalyst-coating technique reported by Ito and co-workers can be used to develop systems that efficiently recycle CO2into useful compounds, like formate, which can power fuel cell devices that provide green electricity.

advertisement


Story Source:

Materialsprovided byUniversity of Tsukuba.注:内容可能edited for style and length.


Journal Reference:

  1. Samuel Jeong, Tatsuhiko Ohto, Tomohiko Nishiuchi, Yuki Nagata, Jun-ichi Fujita, Yoshikazu Ito.Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction.ACS Catalysis, 2021; 9962 DOI:10.1021/acscatal.1c02646

Cite This Page:

University of Tsukuba. "Polymer coating accelerates fuel production." ScienceDaily. ScienceDaily, 5 August 2021. /releases/2021/08/210805133758.htm>.
University of Tsukuba. (2021, August 5). Polymer coating accelerates fuel production.ScienceDaily. Retrieved October 26, 2023 from www.koonmotors.com/releases/2021/08/210805133758.htm
University of Tsukuba. "Polymer coating accelerates fuel production." ScienceDaily. www.koonmotors.com/releases/2021/08/210805133758.htm (accessed October 26, 2023).

Explore More
from ScienceDaily

RELATED STORIES