advertisement
Science News
from research organizations

Turning off growth to make flowers grow

Date:
May 13, 2019
Source:
Nara Institute of Science and Technology
Summary:
Researchers report the final epigenetic events that terminate stem cell growth for proper flower development. They show the series of steps the binding of the transcription factor KNUCKLES initiates to suppress the gene expression of WUSCHEL in Arabidopsis. The ability to control flower growth has implications on seed productivity and food technology.
Share:
advertisement

FULL STORY

The beautiful colors and smells of flowers serve a much greater purpose than just decorating one's home. Flowers are where the plant's reproductive organs are found, and those same colors and smells that make a room beautiful also attract bees and other animals for pollination. Floral stem cells are crucial for the growth of the flower and its organs. That growth must eventually terminate for the flower to fully develop and set seeds. A new study led by scientists at the Nara Institute of Science and Technology (NAIST) and seen inThe Plant Cellshows that the transcription factor KNUCKLES is a key regulator of this stem cell arrest by initiating a serious of epigenetic events to repress the stem cell determinantWUSCHEL.

"Floral stem cell activity vanishes when WUSHCEL is suppressed and silenced through changes in its chromatin state. What we did not know was how this change begins and how it is sustained," explains NAIST Professor Toshiro Ito, who led the study.

Ito's team looked at the activation and suppression of floral stem cells from Arabidopsis. Stem cell activation was marked by a clear expression ofWUSCHEL, but that changed when the cells also began to express KNUCKLES, which bound to theWUSCHELlocus and led toWUSCHEL's expression almost halving four hours later.

Then at 8-12 hours after the KNUCKLES expression, the group found that theWUSCHEL轨迹显示H3K27me3组蛋白甲基化的迹象, a marker of sustained gene suppression.

The question Ito wanted to answer was what were the events that took place from the KNUCKLES binding to theWUSCHELlocus to the H3K27me3 histone methylation that could terminate the stem cell activation.

"H3K27me3 is catalyzed by Polycomb Group complexes, but nothing is known about how the complexes are recruited to theWUSCHELlocus," says Ito.

The researchers discovered that KNUCKLES binding toWUSCHELjettisoned SPLAYED, a chromatin remodeling protein that activatesWUSCHEL. This effect leads to rapid transcriptional repression ofWUSCHEL, followed by the recruitment of Polycomb Group complex toWUSCHEL, where it formed H3K27me3 marks on the chromatin to suppress gene expression.

"KNUCKLES binding was essential for the rapid removal of active H3K4me3 marks and the following deposition of repressive H3K27me3 marks," explains Ito.

The recruitment was done by KNUCKLES interacting with a specific component of the Polycomb Group complex known as FERTILIZATION-INDEPENDENT ENDOSPERM.

"Our study reveals the temporal steps from KNUCKLES binding to H3K27me marks that silence theWUSCHELchromatin. Understanding how stem cell activation is terminated will assist in new food technologies," says Ito.

advertisement

Story Source:

Materials provided byNara Institute of Science and Technology.注意:内容可能被编辑风格d length.


Journal Reference:

  1. Bo Sun, Yingying Zhou, Jie Cai, Erlei Shang, Nobutoshi Yamaguchi, Jun Xiao, Liang-Sheng Looi, Wan-Yi Wee, Xiuying Gao, Doris Wagner, Toshiro Ito.Integration of transcriptional repression and Polycomb-mediated silencing of WUSCHEL in floral meristems.The Plant Cell, 2019; tpc.00450.2018 DOI:10.1105/tpc.18.00450

Cite This Page:

Nara Institute of Science and Technology. "Turning off growth to make flowers grow." ScienceDaily. ScienceDaily, 13 May 2019. .
Nara Institute of Science and Technology. (2019, May 13). Turning off growth to make flowers grow.ScienceDaily. Retrieved June 28, 2023 from www.koonmotors.com/releases/2019/05/190513100611.htm
Nara Institute of Science and Technology. "Turning off growth to make flowers grow." ScienceDaily. www.koonmotors.com/releases/2019/05/190513100611.htm (accessed June 28, 2023).

Explore More
from ScienceDaily

RELATED STORIES

advertisement