advertisement
Science News
from research organizations

New cable-free brain imaging method may take social neuroscience to the next level

Date:
May 28, 2019
Source:
Osaka University
Summary:
研究人员开发出一种cable-free记录卫理公会教徒d that can measure brain activity associated with social behavior in mice. The method was based on a bioluminescent indicator of membrane voltage called 'LOTUS-V', which was delivered to cells via a gene expression system; it is therefore minimally invasive. LOTUS-V enabled cable-free detection of brain activity in freely moving mice. Activation in the primary visual cortex was found during social interaction.
Share:
advertisement

FULL STORY

Existing electrophysiological and fluorescence-based brain imaging techniques in mice are generally invasive, require head fixes or cables, and are not suitable for long-term recordings. While there have been recent advances in imaging methods in freely moving animals, these are major limitations for researchers that are interested in the brain correlates of social behaviors.

Researchers at Osaka University have developed a new method to record brain activity simultaneously in multiple, freely moving mice. The method is based on a recent bioluminescence-based indicator of membrane voltage called "LOTUS-V." The LOTUS-V bioluminescent probe is genetically encoded, which means that it is delivered to target cells non-invasively via a common gene expression system (the adeno-associated virus). Its signal is derived from cell membrane voltage changes, which reflect brain activity.

"The LOTUS-V method reported brain activity in freely moving mice with a good sensitivity and without motion artifacts," says corresponding author Takeharu Nagai. "More importantly, it could measure dynamically changing brain activity in the primary visual cortex during social interactions."

LOTUS-V was applied to cells in the primary visual cortex; this area was targeted because it is known to respond to locomotor activity and visual stimulation. LOTUS-V signal changes reflected neural activity in response to visual stimuli and locomotor activity, as well as during interactions with other mice; neural activity was significantly higher when a mouse approached others. Furthermore, the LOTUS-V signal was not affected by leaky signals emitted from other, nearby mice, which means that it faithfully reflected in vivo brain activity.

"Our method successfully detected activity of the superficial layer of the primary visual cortex -- this is about 300 ?m deep," says Shigenori Inagaki, first author of the study. "It will be important to test its applicability to recording in deeper brain regions."

While the temporal resolution of the LOTUS-V method was sufficient to investigate the dynamics of brain activity triggered by specific events, it is not yet superior to that of the fiber-based method.

"These results could be really exciting for social neurobiologists," Nagai says. "It is minimally invasive, doesn't require cables or head fixes, and is suitable for long-term recordings in freely moving animals, meaning it could be useful in a broad range of other research fields, too."

advertisement

Story Source:

Materials provided byOsaka University.注意:内容可能被编辑风格d length.


Journal Reference:

  1. Shigenori Inagaki, Masakazu Agetsuma, Shinya Ohara, Toshio Iijima, Hideo Yokota, Tetsuichi Wazawa, Yoshiyuki Arai, Takeharu Nagai.Imaging local brain activity of multiple freely moving mice sharing the same environment.Scientific Reports, 2019; 9 (1) DOI:10.1038/s41598-019-43897-x

Cite This Page:

Osaka University. "New cable-free brain imaging method may take social neuroscience to the next level." ScienceDaily. ScienceDaily, 28 May 2019. /releases/2019/05/190528120544.htm>.
Osaka University. (2019, May 28). New cable-free brain imaging method may take social neuroscience to the next level.ScienceDaily. Retrieved August 13, 2023 from www.koonmotors.com/releases/2019/05/190528120544.htm
Osaka University. "New cable-free brain imaging method may take social neuroscience to the next level." ScienceDaily. www.koonmotors.com/releases/2019/05/190528120544.htm (accessed August 13, 2023).

Explore More
from ScienceDaily

RELATED STORIES