advertisement
Science News
from research organizations

Global flash droughts expected to increase in a warming climate

Date:
May 26, 2023
Source:
University of Oklahoma
Summary:
Researchers have published new findings on how our warming climate will affect the frequency of flash droughts and the risk to croplands globally.
Share:
advertisement

FULL STORY

The rapid development of unexpected drought, called flash drought, can severely impact agricultural and ecological systems with ripple effects that extend even further. Researchers at the University of Oklahoma are assessing how our warming climate will affect the frequency of flash droughts and the risk to croplands globally.

Jordan Christian, a postdoctoral researcher, is the lead author of the study, "Global projections of flash drought show increased risk in a warming climate," published today inNature Communications Earth and Environment.

"In this study, projected changes in flash drought frequency and cropland risk from flash drought are quantified using global climate model simulations," Christian said. "We find that flash drought occurrence is expected to increase globally among all scenarios, with the sharpest increases seen in scenarios with higher radiative forcing and greater fossil fuel usage."

Radiative forcing describes the imbalance of radiation where more radiation enters Earth's atmosphere than leaves it. Like burning fossil fuels, these activities are among the most significant contributors to climate warming. The changing climate is expected to increase severe weather events from storms, flash flooding, flash droughts and more.

"Flash drought risk over cropland is expected to increase globally, with the largest increases projected across North America and Europe," Christian said.

"CMIP6 models projected a 1.5 times increase in the annual risk of flash droughts over croplands across North America by 2100, from the 2015 baseline of a 32% yearly risk in 2015 to 49% in 2100, while Europe is expected to have the largest increase in the most extreme emissions scenario (32% to 53%), a 1.7 times increase in annual risk," he said.

在那副教授杰弗里•战国ol of Meteorology in the College of Atmospheric and Geographic Sciences and the School of Civil Engineering and Environmental Sciences in the Gallogly College of Engineering, is Christian's faculty advisor and study co-author. Basara is the executive associate director of the hydrology and water security program and leads OU's Climate, Hydrology, Ecosystems and Weather research group. The researchers have been investigating ways to improve flash drought identification and prediction since 2017, with multiple papers published in theJournal of Hydrometeorology,Environmental Research LettersandNature Communications.

"This study continues to emphasize that agricultural producers, both domestic and abroad, will face increasing risks associated with water availability due to the rapid development of drought. As a result, socioeconomic pressures associated with food production, including higher prices and social unrest, will also increase when crop losses occur due to flash drought," Basara said.

advertisement

Story Source:

Materialsprovided byUniversity of Oklahoma. Original written by Chelsea Julian.注意:内容可能被编辑风格d length.


Journal Reference:

  1. Jordan I. Christian, Elinor R. Martin, Jeffrey B. Basara, Jason C. Furtado, Jason A. Otkin, Lauren E. L. Lowman, Eric D. Hunt, Vimal Mishra, Xiangming Xiao.Global projections of flash drought show increased risk in a warming climate.Communications Earth & Environment, 2023; 4 (1) DOI:10.1038/s43247-023-00826-1

Cite This Page:

University of Oklahoma. "Global flash droughts expected to increase in a warming climate." ScienceDaily. ScienceDaily, 26 May 2023. .
University of Oklahoma. (2023, May 26). Global flash droughts expected to increase in a warming climate.ScienceDaily. Retrieved July 28, 2023 from www.koonmotors.com/releases/2023/05/230526183216.htm
University of Oklahoma. "Global flash droughts expected to increase in a warming climate." ScienceDaily. www.koonmotors.com/releases/2023/05/230526183216.htm (accessed July 28, 2023).

Explore More
from ScienceDaily

RELATED STORIES