advertisement
Science News
from research organizations

Light-shrinking material lets ordinary microscope see in super resolution

Date:
June 1, 2021
Source:
加州大学-圣地亚哥
Summary:
Engineers have developed a technology that turns a conventional light microscope into what's called a super-resolution microscope. It improves the microscope's resolution (from 200 nm to 40 nm) so that it can be used to directly observe finer structures and details in living cells.
Share:
advertisement

FULL STORY

Electrical engineers at the University of California San Diego developed a technology that improves the resolution of an ordinary light microscope so that it can be used to directly observe finer structures and details in living cells.

的technology turns a conventional light microscope into what's called a super-resolution microscope. It involves a specially engineered material that shortens the wavelength of light as it illuminates the sample -- this shrunken light is what essentially enables the microscope to image in higher resolution.

"This material converts low resolution light to high resolution light," said Zhaowei Liu, a professor of electrical and computer engineering at UC San Diego. "It's very simple and easy to use. Just place a sample on the material, then put the whole thing under a normal microscope -- no fancy modification needed."

的work, which was published inNature Communications, overcomes a big limitation of conventional light microscopes: low resolution. Light microscopes are useful for imaging live cells, but they cannot be used to see anything smaller. Conventional light microscopes have a resolution limit of 200 nanometers, meaning that any objects closer than this distance will not be observed as separate objects. And while there are more powerful tools out there such as electron microscopes, which have the resolution to see subcellular structures, they cannot be used to image living cells because the samples need to be placed inside a vacuum chamber.

"The major challenge is finding one technology that has very high resolution and is also safe for live cells," said Liu.

的technology that Liu's team developed combines both features. With it, a conventional light microscope can be used to image live subcellular structures with a resolution of up to 40 nanometers.

的technology consists of a microscope slide that's coated with a type of light-shrinking material called a hyperbolic metamaterial. It is made up of nanometers-thin alternating layers of silver and silica glass. As light passes through, its wavelengths shorten and scatter to generate a series of random high-resolution speckled patterns. When a sample is mounted on the slide, it gets illuminated in different ways by this series of speckled light patterns. This creates a series of low resolution images, which are all captured and then pieced together by a reconstruction algorithm to produce a high resolution image.

的researchers tested their technology with a commercial inverted microscope. They were able to image fine features, such as actin filaments, in fluorescently labeled Cos-7 cells -- features that are not clearly discernible using just the microscope itself. The technology also enabled the researchers to clearly distinguish tiny fluorescent beads and quantum dots that were spaced 40 to 80 nanometers apart.

的super resolution technology has great potential for high speed operation, the researchers said. Their goal is to incorporate high speed, super resolution and low phototoxicity in one system for live cell imaging.

Liu's team is now expanding the technology to do high resolution imaging in three-dimensional space. This current paper shows that the technology can produce high resolution images in a two-dimensional plane. Liu's team previously published a paper showing that this technology is also capable of imaging with ultra-high axial resolution (about 2 nanometers). They are now working on combining the two together.

advertisement

Story Source:

Materialsprovided by加州大学-圣地亚哥.Note: Content may be edited for style and length.


Journal Reference:

  1. Yeon Ui Lee, Junxiang Zhao, Qian Ma, Larousse Khosravi Khorashad, Clara Posner, Guangru Li, G. Bimananda M. Wisna, Zachary Burns, Jin Zhang, Zhaowei Liu.Metamaterial assisted illumination nanoscopy via random super-resolution speckles.Nature Communications, 2021; 12 (1) DOI:10.1038/s41467-021-21835-8

Cite This Page:

加州大学-圣地亚哥。“Light-shrinking material lets ordinary microscope see in super resolution." ScienceDaily. ScienceDaily, 1 June 2021. .
加州大学-圣地亚哥。(2021年6月1). Light-shrinking material lets ordinary microscope see in super resolution.ScienceDaily. Retrieved July 23, 2023 from www.koonmotors.com/releases/2021/06/210601100729.htm
加州大学-圣地亚哥。“Light-shrinking material lets ordinary microscope see in super resolution." ScienceDaily. www.koonmotors.com/releases/2021/06/210601100729.htm (accessed July 23, 2023).

Explore More
from ScienceDaily

RELATED STORIES