advertisement
Science News
from research organizations

Addressing global warming with new nanoparticles and sunshine

Date:
January 21, 2020
Source:
Institute for Basic Science
Summary:
收集阳光,IBS科学家报道一个新的strategy to transform carbon dioxide (CO2) into oxygen (O2) and pure carbon monoxide (CO) without side-products in water. This artificial photosynthesis method could bring new solutions to environmental pollution and global warming.
Share:
advertisement

FULL STORY

Harvesting sunlight, researchers of theCenter for Integrated Nanostructure Physics, within theInstitute for Basic Science(IBS, South Korea) published inMaterials Todaya new strategy to transform carbon dioxide (CO2) into oxygen (O2) and pure carbon monoxide (CO) without side-products in water. This artificial photosynthesis method could bring new solutions to environmental pollution and global warming.

While, in green plants, photosynthesis fixes CO2into sugars, the artificial photosynthesis reported in this study can convert CO2into oxygen and pure CO as output. The latter can then be employed for a broad range of applications in electronics, semiconductor, pharmaceutical, and chemical industries. The key is to find the right high-performance photocatalyst to help the photosynthesis take place by absorbing light, convert CO2, and ensuring an efficient flow of electrons, which is essential for the entire system.

Titanium oxide (TiO2) is a well-known photocatalyst. It has already attracted significant attention in the fields of solar energy conversion and environmental protection due to its high reactivity, low toxicity, chemical stability, and low cost. While conventional TiO2can absorb only UV light, the IBS research team reported previously two different types of blue-colored TiO2(or "blue titania") nanoparticles that could absorb visible light thanks to a reduced bandgap of about 2.7 eV. They were made of ordered anatase/disordered rutile (Ao/Rd) TiO2(called, HYL's blue TiO2-I) (Energy & Environmental Science, 2016), and disordered anatase/ordered rutile (Ad/Ro) TiO2(called, HYL's blue TiO2-II) (ACS Applied Materials & Interfaces, 2019), where anatase and rutile refer to two crystalline forms of TiO2and the introduction of irregularities (disorder) in the crystal enhances the absorption of visible and infra-red light.

For the efficient artificial photosynthesis for the conversion of CO2into oxygen and pure CO, IBS researchers aimed to improve the performance of these nanoparticles by combining blue (Ao/Rd) TiO2with other semiconductors and metals that can enhance water oxidation to oxygen, in parallel to CO2reduction into CO only. The research team obtained the best results with hybrid nanoparticles made of blue titania, tungsten trioxide (WO3), and 1% silver (TiO2/WO3-Ag). WO3was chosen because of the low valence band position with its narrow bandgap of 2.6 eV, high stability, and low cost. Silver was added because it enhances visible light absorption, by creating a collective oscillation of free electrons excited by light, and also gives high CO selectivity. The hybrid nanoparticles showed about 200 times higher performance than nanoparticles made of TiO2alone and TiO2/WO3without silver.

Starting from water and CO2这部小说,混合catalyst produced O2and pure CO, without any side products, such as hydrogen gas (H2) and metane (CH4). The apparent quantum yield that is the ratio of several reacted electrons to the number of incident photons was 34.8 %, and the rate of reacted electrons 2333.44 μmol g−1h−1. The same measurement was lower for nanoparticles without silver (2053.2 μmol g−1h−1), and for nanoparticles with only blue TiO2(912.4 μmol g−1h−1).

advertisement

Story Source:

Materialsprovided byInstitute for Basic Science.Note: Content may be edited for style and length.


Journal Reference:

  1. Chau T.K. Nguyen, Ngoc Quang Tran, Sohyeon Seo, Heemin Hwang, Simgeon Oh, Jianmin Yu, Jinsun Lee, Thi Anh Le, Joseph Hwang, Meeree Kim, Hyoyoung Lee.Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity.Materials Today, 2020; DOI:10.1016/j.mattod.2019.11.005

Cite This Page:

Institute for Basic Science. "Addressing global warming with new nanoparticles and sunshine." ScienceDaily. ScienceDaily, 21 January 2020. /releases/2020/01/200121112930.htm>.
Institute for Basic Science. (2020, January 21). Addressing global warming with new nanoparticles and sunshine.ScienceDaily. Retrieved September 23, 2023 from www.koonmotors.com/releases/2020/01/200121112930.htm
Institute for Basic Science. "Addressing global warming with new nanoparticles and sunshine." ScienceDaily. www.koonmotors.com/releases/2020/01/200121112930.htm (accessed September 23, 2023).

Explore More
from ScienceDaily

RELATED STORIES