advertisement
Science News
from research organizations

新协议生成肠道瀑样在vitro

Development could lead to better disease models in the lab to test treatments for efficacy

Date:
January 10, 2020
Source:
Boston Medical Center
Summary:
Researchers have developed a new way to generate groups of intestinal cells that can be used, among others, to make disease models in the lab to test treatments for diseases affecting the gastrointestinal system. Using human induced pluripotent stem cells, this novel approach combined a variety of techniques that enabled the development of three-dimensional groups of intestinal cells called organoids in vitro, which can expand disease treatment testing in the lab using human cells.
Share:
advertisement

FULL STORY

Boston researchers have developed a new way to generate groups of intestinal cells that can be used, among others, to make disease models in the lab to test treatments for diseases affecting the gastrointestinal system. Using human induced pluripotent stem cells, this novel approach combined a variety of techniques that enabled the development of three-dimensional groups of intestinal cells called organoids in vitro, which can expand disease treatment testing in the lab using human cells.

Published online inNature Communications, this process provides a novel platform to improve drug screenings and uncover novel therapies to treat a variety of diseases impacting the intestine, such as inflammatory bowel disease, colon cancer and Cystic Fibrosis.

Researchers at the Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center used donated human induced pluripotent stem cells (hiPSCs), which are created by reprogramming adult cells into a primitive state. For this study, these cells were pushed to differentiate into intestinal cells using specific growth factors in order to create organoids in a gel. This new protocol allowed the cells to develop without mesenchyme, which typically in other protocols, provides support for the intestinal epithelial cells to grow. By taking out the mesenchyme, the researchers could study exclusively epithelial cells, which make up the intestinal tract.

In addition, using CRISPR technology, the researchers were able to modify and create a novel iPSC stem cell line that glowed green when differentiated into intestinal cells. This allowed the researchers to follow the process of how intestinal cells differentiate in vitro.

"Generating organoids in our lab allows us to create more accurate disease models, which are used to test treatments and therapies targeted to a specific genetic defect or tissue -- and it's all possible without harming the patient," said Gustavo Mostoslavsky, MD, PhD, co-director of CReM and faculty in the gastroenterology section at Boston Medical Center. "This approach allows us to determine what treatments could be most effective, and which are ineffective, against a disease."

Using this new protocol, the researchers generated intestinal organoids from iPSCs containing a mutation that causes Cystic Fibrosis, which typically affects several organs, including the gastrointestinal tract. Using CRISPR technology, the researchers corrected the mutation in the intestinal organoids. The intestinal organoids with the mutation did not respond to a drug while the genetically corrected cells did respond, demonstrating their future potential for disease modeling and therapeutic screening applications.

The protocol developed in this study provides strong evidence to continue using human iPSCs to study development at the cellular level, tissue engineering and disease modeling in order to advance the understanding -- and possibilities -- of regenerative medicine.

"I hope that this study helps move forward our collective understanding about how diseases impact the gastrointestinal tract at the cellular level," said Mostoslavsky, who also is associate professor of medicine and microbiology at Boston University School of Medicine. "The continual development of novel techniques in creating highly differentiated cells that can be used to develop disease models in a lab setting will pave the way for the development of more targeted approaches to treat many different diseases."

advertisement

Story Source:

Materialsprovided byBoston Medical Center.注意:内容可能被编辑风格d length.


Journal Reference:

  1. Aditya Mithal, Amalia Capilla, Dar Heinze, Andrew Berical, Carlos Villacorta-Martin, Marall Vedaie, Anjali Jacob, Kristine Abo, Aleksander Szymaniak, Megan Peasley, Alexander Stuffer, John Mahoney, Darrell N. Kotton, Finn Hawkins, Gustavo Mostoslavsky.Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells.Nature Communications, 2020; 11 (1) DOI:10.1038/s41467-019-13916-6

Cite This Page:

波士顿医学中心。”我新的协议来生成ntestinal organoids in vitro: Development could lead to better disease models in the lab to test treatments for efficacy." ScienceDaily. ScienceDaily, 10 January 2020. .
波士顿医学中心。(2020, January 10). New protocol to generate intestinal organoids in vitro: Development could lead to better disease models in the lab to test treatments for efficacy.ScienceDaily. Retrieved July 10, 2023 from www.koonmotors.com/releases/2020/01/200110122558.htm
波士顿医学中心。”我新的协议来生成ntestinal organoids in vitro: Development could lead to better disease models in the lab to test treatments for efficacy." ScienceDaily. www.koonmotors.com/releases/2020/01/200110122558.htm (accessed July 10, 2023).

Explore More
from ScienceDaily

RELATED STORIES