advertisement
科学新闻
from research organizations

Otherworldly worms with three sexes discovered in Mono Lake

Eight species of nematode discovered in the lake's harsh conditions

Date:
September 26, 2019
Source:
California Institute of Technology
Summary:
The extreme environment of Mono Lake was thought to only house two species of animals -- until now.
Share:
advertisement

FULL STORY

Caltech scientists have discovered a new species of worm thriving in the extreme environment of Mono Lake. This new species, temporarily dubbedAuanemasp., has three different sexes, can survive 500 times the lethal human dose of arsenic, and carries its young inside its body like a kangaroo.

Mono Lake, located in the Eastern Sierras of California, is three times as salty as the ocean and has an alkaline pH of 10. Before this study, only two other species (other than bacteria and algae) were known to live in the lake -- brine shrimp and diving flies. In this new work, the team discovered eight more species, all belonging to a class of microscopic worms called nematodes, thriving in and around Mono Lake.

The work was done primarily in the laboratory of Paul Sternberg, Bren Professor of Biology. A paper describing the research appears online on September 26 in the journalCurrent Biology.

The Sternberg laboratory has had a long interest in nematodes, particularlyCaenorhabditis elegans, which uses only 300 neurons to exhibit complex behaviors, such as sleeping, learning, smelling, and moving. That simplicity makes it a useful model organism with which to study fundamental neuroscience questions. Importantly,C. eleganscan easily thrive in the laboratory under normal room temperatures and pressures.

As nematodes are considered the most abundant type of animal on the planet, former Sternberg lab graduate students Pei-Yin Shih (PhD '19) and James Siho Lee (PhD '19) thought they might find them in the harsh environment of Mono Lake. The eight species they found are diverse, ranging from benign microbe-grazers to parasites and predators. Importantly, all are resilient to the arsenic-laden conditions in the lake and are thus considered extremophiles -- organisms that thrive in conditions unsuitable for most life forms.

When comparing the newAuanemaspecies to sister species in the same genus, the researchers found that the similar species also demonstrated high arsenic resistance, even though they do not live in environments with high arsenic levels. In another surprising discovery,Auanemasp. itself was found to be able to thrive in the laboratory under normal, non-extreme conditions. Only a few known extremophiles in the world can be studied in a laboratory setting.

这表明线虫可能有一个genetic predisposition for resiliency and flexibility in adapting to harsh and benign environments alike.

advertisement

"Extremophiles can teach us so much about innovative strategies for dealing with stress," says Shih. "Our study shows we still have much to learn about how these 1000-celled animals have mastered survival in extreme environments."

The researchers plan to determine if there are particular biochemical and genetic factors that enable nematodes' success and to sequence the genome ofAuanemasp. to look for genes that may enable arsenic resistance. Arsenic-contaminated drinking water is a major global health concern; understanding how eukaryotes like nematodes deal with arsenic will help answer questions about how the toxin moves through and affects cells and bodies.

But beyond human health, studying extreme species like the nematodes of Mono Lake contributes to a bigger, global picture of the planet, says Lee.

"It's tremendously important that we appreciate and develop a curiosity for biodiversity," he adds, noting that the team had to receive special permits for their field work at the lake. "The next innovation for biotechnology could be out there in the wild. A new biodegradable sunscreen, for example, was discovered from extremophilic bacteria and algae. We have to protect and responsibly utilize wildlife."

The paper is titled, "Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance." Shih and Lee are co-first authors on the study; Shih is now a postdoctoral fellow at Columbia University and Lee is now a postdoctoral fellow at The Rockefeller University. In addition to Shih, Lee, and Sternberg, other co-authors are Ryoji Shinya of Meiji University in Japan, Natsumi Kanzaki of the Kansai Research Center in Japan, Andre Pires da Silva of the University of Warwick in the UK, former Caltech Summer Undergraduate Research Fellow student Jean Marie Badroos now of UC Berkeley, and Elizabeth Goetz and Amir Sapir of the University of Haifa in Israel. Funding was provided by the Amgen Scholars Program, the Leverhulme Trust, and the Howard Hughes Medical Institute.

Story Source:

Materialsprovided byCalifornia Institute of Technology.Note: Content may be edited for style and length.


Journal Reference:

  1. Shih, Pei-Yin and Lee, James Siho and Shinya, Ryoji and Kanzaki, Natsumi and Pires-daSilva, Andre and Badroos, Jean Marie and Goetz, Elizabeth and Sapir, Amir and Sternberg, Paul W.Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance.Current Biology, 2019 DOI:10.1016/j.cub.2019.08.024

Cite This Page:

California Institute of Technology. "Otherworldly worms with three sexes discovered in Mono Lake: Eight species of nematode discovered in the lake's harsh conditions." ScienceDaily. ScienceDaily, 26 September 2019. .
California Institute of Technology. (2019, September 26). Otherworldly worms with three sexes discovered in Mono Lake: Eight species of nematode discovered in the lake's harsh conditions.ScienceDaily. Retrieved July 20, 2023 from www.koonmotors.com/releases/2019/09/190926141715.htm
California Institute of Technology. "Otherworldly worms with three sexes discovered in Mono Lake: Eight species of nematode discovered in the lake's harsh conditions." ScienceDaily. www.koonmotors.com/releases/2019/09/190926141715.htm (accessed July 20, 2023).

Explore More
from ScienceDaily

RELATED STORIES