advertisement
Science News
from research organizations

Stretchable wireless sensor could monitor healing of cerebral aneurysms

Date:
August 28, 2019
Source:
Georgia Institute of Technology
Summary:
A wireless sensor small enough to be implanted in the blood vessels of the human brain could help clinicians evaluate the healing of aneurysms -- bulges that can cause death or serious injury if they burst. The stretchable sensor, which operates without batteries, would be wrapped around stents or diverters implanted to control blood flow in vessels affected by the aneurysms.
Share:
advertisement

FULL STORY

A wireless sensor small enough to be implanted in the blood vessels of the human brain could help clinicians evaluate the healing of aneurysms -- bulges that can cause death or serious injury if they burst. The stretchable sensor, which operates without batteries, would be wrapped around stents or diverters implanted to control blood flow in vessels affected by the aneurysms.

To reduce costs and accelerate manufacturing, fabrication of the stretchable sensors uses aerosol jet 3D printing to create conductive silver traces on elastomeric substrates. The 3D additive manufacturing technique allows production of very small electronic features in a single step, without using traditional multi-step lithography processes in a cleanroom. The device is believed to be the first demonstration of aerosol jet 3D printing to produce an implantable, stretchable sensing system for wireless monitoring.

“我们传感器的美妙之处在于,它可以seamlessly integrated onto existing medical stents or flow diverters that clinicians are already using to treat aneurysms," said Woon-Hong Yeo, an assistant professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "We could use it to measure an incoming blood flow to the aneurysm sac to determine how well the aneurysm is healing, and to alert doctors if blood flow changes."

Inserted using a catheter system, the sensor would use inductive coupling of signals to allow wireless detection of biomimetic cerebral aneurysm hemodynamics. The research was reported August 7 in the journalAdvanced Science.

现在监测脑动脉瘤的进步requires repeated angiogram imaging using contrast materials that can have harmful side effects. Because of the cost and potential negative effects, use of the imaging technique must be limited. However, a sensor placed in a blood vessel could allow more frequent evaluations without the use of imaging dyes.

"For patients who have had a procedure done, we would be able to tell if the aneurysm is occluding as it should without using any imaging tools," Yeo said. "We will be able to accurately measure blood flow to detect changes as small as 0.05 meters per second."

The six-layer sensor is fabricated from biocompatible polyimide, two separate layers of a mesh pattern produced from silver nanoparticles, a dielectric and soft polymer-encapsulating material. The sensor would be wrapped around the stent or flow diverter, which must be less than two or three millimeters in diameter to fit into the blood vessels.

advertisement

The sensor includes a coil to pick up electromagnetic energy transmitted from another coil located outside the body. Blood flowing through the implanted sensor changes its capacitance, which alters the signals passing through the sensor on their way to a third coil located outside the body. In the laboratory, Yeo and his collaborators have measured capacitance changes six centimeters away from a sensor implanted in meat to simulate brain tissue.

"The flow rate is correlated really well with the capacitance change that we can measure," Yeo said. "We have made the sensor very thin and deformable so it can respond to small changes in blood flow."

Use of the aerosol jet 3D printing technique was essential to producing the stretchable and flexible electronics necessary for the sensor. The technique uses a spray of aerosol particles to create patterns, allowing narrower feature sizes than conventional inkjet printing.

"We can control the printing speed, the printing width, and the amount of material being jetted," Yeo said. "The parameters can be optimized for each material, and we can use materials that have a broad range of viscosities."

Because the sensor can be fabricated in a single step without costly cleanroom facilities, it could be manufactured in higher volume at lower cost.

The next phase of the aneurysm sensor will be able to measure blood pressure in the vessel along with the flow rates. "We will be able to measure how pressure contributes to flow change," Yeo explained. "That would allow the device to be used for other applications, such as intracranial pressure measurements."

Yeo's research team has also developed a flexible and wearable health monitor able to provide ECG and other information. He says the success of the monitoring technique demonstrates the potential for smart and connected wireless soft electronics based on nanomaterials, stretchable mechanics, and machine learning algorithms.

"We are excited that people are now recognizing the potential of this technology," Yeo added. "There are a lot of opportunities to integrate this sensing mechanism into ultrathin membranes that are implantable within the body."

Story Source:

Materials provided byGeorgia Institute of Technology.注意:内容可能被编辑风格d length.


Journal Reference:

  1. Robert Herbert, Saswat Mishra, Hyo-Ryoung Lim, Hyoungsuk Yoo, Woon-Hong Yeo.Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real-Time Monitoring of Cerebral Aneurysm Hemodynamics.Advanced Science, 2019; 1901034 DOI:10.1002/advs.201901034

Cite This Page:

Georgia Institute of Technology. "Stretchable wireless sensor could monitor healing of cerebral aneurysms." ScienceDaily. ScienceDaily, 28 August 2019. /releases/2019/08/190828145507.htm>.
Georgia Institute of Technology. (2019, August 28). Stretchable wireless sensor could monitor healing of cerebral aneurysms.ScienceDaily. Retrieved September 19, 2023 from www.koonmotors.com/releases/2019/08/190828145507.htm
Georgia Institute of Technology. "Stretchable wireless sensor could monitor healing of cerebral aneurysms." ScienceDaily. www.koonmotors.com/releases/2019/08/190828145507.htm (accessed September 19, 2023).

Explore More
from ScienceDaily

RELATED STORIES